(2021, MIT Press)
Foreword by Yoshua Bengio.
An examination of machine learning art and its practice in new media art and music.
“Over the past decade, an artistic movement has emerged that draws on machine learning as both inspiration and medium. In this book, transdisciplinary artist-researcher Sofian Audry examines artistic practices at the intersection of machine learning and new media art, providing conceptual tools and historical perspectives for new media artists, musicians, composers, writers, curators, and theorists. Audry looks at works from a broad range of practices, including new media installation, robotic art, visual art, electronic music and sound, and electronic literature, connecting machine learning art to such earlier artistic practices as cybernetics art, artificial life art, and evolutionary art.”
For more information and buying options
Audry, Sofian, Victor Drouin-Trempe & Ola Siebert (2023). “The Strangest Music in the World: Self-Supervised Creativity and Nostalgia for the Future in Robotic Rock Band ‘The Three Sirens’”. MDPI Arts 12(1).
Audry, Sofian (2022). “AI for Good: Why Artists Are Key to Improving Machine Learning Technologies”. T\LT West.
Hagler, Jo’Elen, ChiHyeong Kim, Pierre Kateb, JeeYeon Yeu, Noémy Gagnon-Lafrenais, Erin Gee, Sofian Audry & Fabio Cicoira. (2022). “Flexible and Stretchable Printed Conducting Polymer Devices for Electrodermal Activity Measurements”. Flexible and Printed Electronics 7(1).
Audry, Sofian (2021). “Aglaopheme. Version 0.2”, in Le Comportement des Choses. Quinz, Emanuele (Ed). Les Presses du Réel, Paris, France. pp. 164–171.
Audry, Sofian (2021). “Behavior Morphologies of Machine Learning Agents in Media Artworks”, Leonardo, 54(3), pp. 269–273.
Armand, Edwige, Sofian Audry, Frédérick Garcia et Maurizio TeZ Martinucci (2020). “Who is Speaking ? Artscience Stagings of Nonhuman Sentience”, ISEA 2020 Conference proceedings, Montréal, Canada.
Gee, Erin, Alex M. Lee & Sofian Audry (2020). “Playing with Emotions : Biosignal-based Control in Virtual Reality Game Project H.E.A.R.T.”, ISEA 2020 Conference Proceedings, Montréal, Canada.
Audry, Sofian (2020). “La matérialité révélatrice de l’apprentissage automatique”, ESPACE art actuel, “IA – Art sans artistes”, No 124.
Audry, Sofian & Jon Ippolito (2019). “Can Artificial Intelligence Make Art without Artists ? Ask the Viewer”, MDPI Arts 8(1).
Gee, Erin & Sofian Audry (2019). “Automation as Echo”, ASAP/Journal.
Audry, Sofian (2019). “Unrolling the Learning Curve : Aesthetics of Adaptive Behaviors with Deep Recurrent Nets for Text Generation”, International Symposium on Computational Media Art 2019 Conference proceedings, Hong Kong, China.
Audry, Sofian (2018). “for the sleepers in that quiet earth. : Experiencing the Behavior of a Deep Learning Neural Network Agent through a Generative Artbook”, ISEA 2018 Conference proceedings, Durban, South Africa.
Salter, Chris & Sofian Audry (2018). “Towards Probabilistic Worldmaking : Xenakis, n-Polytope and the Cybernetic Path to Chaos”, in Worldmaking as Techné : Exploring Worlds of Participatory Art, Architecture, and Music. de Campo, A., Hosale, M., Murrani, S. (Eds). Riverside Architectural Press, Toronto, Canada.
Audry, Sofian (2018). “Aesthetics of Adaptive Behaviors in Embodied Agents”, Body of Knowledge 2016 Conference Proceedings, UCI, Irvine, USA.
Audry, Sofian et al. (2017). “256-Byte Creative Programs” (TROPE-17-02), The Trope Tank, MIT, Cambridge, USA.
Audry, Sofian (2016). “Aesthetics of Adaptive Behaviors in Agent-based Art”, ISEA 2016 Conference proceedings, Hong Kong, China.
Audry, Sofian (2010). “Absences : Public Art Interventions in Natural Spaces using Autonomous Electronic Devices”, ISEA 2010 Conference Proceedings, pp. 469–471. Ruhr, Germany.
Bengio, Yoshua & Jean-Sébastien Senécal (2008). “Adaptive Importance Sampling to Accelerate Training of a Neural Probabilistic Language Model” IEEE Transactions on Neural Networks, 19(4), pp. 713–722.
Bengio, Yoshua et al. (2006). “Neural probabilistic language models”, Studies in Fuzziness and Soft Computing, Vol 194, p. 137-186, Berlin, Germany.
Bengio, Yoshua & Jean-Sébastien Senécal (2003). “Quick Training of Probabilistic Neural Nets by Importance Sampling”. Ninth International Workshop on Artificial Intelligence and Statistics, Society for Artificial Intelligence and Statistics, Key West, USA.
Senécal, Jean-Sébastien (2016). Machines That Learn : Aesthetics of Adaptive Behaviors in Agent-based Art. Thèse de doctorat, Concordia University, Montréal. 307 pages.
Senécal, Jean-Sébastien (2010). Une exploration des processus d’assignation identitaires à travers une expérience interactive. Mémoire de maîtrise, École des Médias, Université du Québec à Montréal, Montréal. 40 pages.
2003 Senécal, Jean-Sébastien (2003). Accélérer l’entraînement d’un modèle non-paramétrique de densité non normalisée par échantillonnage aléatoire. Mémoire de maîtrise, Département d’Informatique and de Recherche Opérationelle, Université de Montréal, Montréal. 91 pages.